
Journal of Applied Mechanics and Technical Physics, Vol. 36, No. I, 1995 

P R E S S U R E  W A V E S  I N  A L I Q U I D  S U S P E N S I O N  W I T H  S O L I D  

P A R T I C L E S  A N D  G A S  B U B B L E S  

V .  E .  D o n t s o v ,  V .  E .  N a k o r y a k o v ,  and  B.  G .  Pokusaev  UDC 532.529 

The propagation of pressure disturbances in a suspension of a liquid and solid particles is a subject that has been studied 

quite extensively. The theory of multiple scattering was used in [1, 2] to obtain expressions for the velocity and attenuation 
factor of an acoustic wave, and the results were compared with experimental data. Good agreement between theoretical and 

experimental data on the speed and attenuation of sound in suspensions was obtained in [3] on the basis of the Biot model for 

the propagation of sound in saturated porous media. The author of [4] presented averaged equations of the mechanics of 
disperse media that make it possible to examine the evolution of waves in two-phase mixtures. The results of a series of 

theoretical and experimental studies on wave dynamics in gas-liquid media were presented in [5], and the propagation of waves 

in porous media saturated with a gas-liquid mixture was examined in [6]. 
Our goal here is to experimentally study the evolution and structure of pressure waves of moderate intensity in a 

suspension of a liquid with solid particles and gas bubbles. We also want to generalize the empirical data on the basis of a 

theoretical analysis. 

We will examine the propagation of unidimensional pressure disturbances in a liquid containing suspended solid spheres 

and gas bubbles. We assume that the length of the waves associated with the disturbances is much greater on the dimensions 

of the spheres, the dimensions of the bubbles, and the distances between them. We represent a liquid with gas bubbles as a 

homogeneous medium having the mean density Pm, pressure p, and velocity v m. For a disperse medium (solid spheres + 
homogeneous gas-liquid medium), the system of equations describing the propagation of unidimensional pressure perturbations 

has the form [4] 
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where Pm = P2( 1 - ~P) + P3~ o; m is the porosity of the medium; ~o is the volumetric gas content of the liquid (thus, the 
quantity ~om will correspond to the volumetric gas content in the three-phase medium at low values of ~); c~ is a coefficient 
expressing the apparent additional mass of the liquid. The subscripts 1, 2, and 3 pertain to the solid, liquid, and gas phases, 
m pertains to the gas-liquid mixture, and 0 denotes the initial state of a phase. 

We represent the interfacial force F~ as [4] 

s c p m ( l  - m) (v m- vl)' F = -  
4 d 

Here, d is the diameter of the solid spheres; c~ is the resistance coefficient, determined experimentally. At low relative 

velocities, the interfacial force depends linearly on relative velocity: 

Novosibirsk. Translated from Prildadnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 32-40, January-February, 
1995. Original article submitted March 11, 1995. 

30 0021-8944/95/3601-0030512.50 �9 Plenum Publishing Corporation 



~YP m 
e - ~o (%- o~) 

(K o is permeability, usually introduced for porous media). 

To close system (I), we obtain the relationship between the pressure p and the density of the homogeneous mixture 

am by using an equation to express the pulsations of a single bubble in a liquid with suspended solid particles. We will examine 

two limiting cases for oscillations of the bubble. In one case, when there is no radial motion between the liquid and the solid 

particles, i.e., when the particles are frozen in the liquid, we obtain the Rayleigh equation for pulsations of a bubble in an 

effective liquid with the density ao = at( I - m) + a2 m. This approach is valid when the densities of the solid and liquid 

phases are close to one another or when the period of oscillation of the bubbles is much longer than the time it takes for liquid 

boundary layers to form on the solid spheres. 

Following [5] and changing over from the radius of the bubble to the density of the three-phase medium a(P = a0(l 

- = - 7 + + ' 

- -  m~o) + o3m~o), we obtain 

(2) 

where c w = (~,p/o~om) 1/2 is the Wood velocity for a three-phase medium;/~ = R~/3~om is the dispersion coefficient; 13 = (3' 

+ 1)/2o~m is the coefficient of  nonlinearity; R o is the radius of  a bubble; ~ is the effective viscosity of  the suspension of liquid 

and solid particles; 3' is the adiabatic exponent. 
In the other limiting case, when the densities of the liquid and particles differ significantly and the frequency of bubble 

oscillation is relatively high (co > >  to m = m~,/20K o [7]), there is not enough time for the particles to undergo radial oscillations 
about the bubble. In this case, the equation for the oscillations of the bubble are obtained in the same manner as the equation 
for the oscillation of a bubble in a saturated incompressible porous medium [7]. Changing over from the bubble radius to am, 

we have 

(3) 

Here, c o - ('ypo/Pm~p) 1/2 is low-frequency sonic velocity in the gas- l iquid mixture;/3 -- P~/3~; B = (3" + 1)/2Pm~; e* = 
p(1 + mP~/4Ko) + VT; v is the kinematic viscosity of the liquid; PT = (3' - -  1)Ro w~0a /(2v/~-) is the coefficient of  effective 

thermal viscosity [5]; too is the resonance frequency of oscillation of the bubbles; a is the diffusivity of the gas. 
We can use closed system (1), (3) to obtain an evolutionary equation for pressure p, with the assumption that the 

nonlinear, dispersive, and dissipative terms are small. Since the nonlinearity in Eq. (3) is considerably greater than the 
hydrodynamic nonlinearity in Eqs. (1), we can linearize system (1). If we assume that the interfacial force at the liquid-solid 

boundary is linearly dependent on relative velocity and if we take into account the unsteady Basse force [4], we can reduce 

system (1) to the equation 
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is sonic velocity in the three-phase mixture. 
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If  we further assume that the nonlinear, dispersive, and dissipative terms are small and we substitute ~Pm = ~p/c2 intO 

them, we obtain the following evolutionary equation from (3-4) 

82/) Olp my m ( l  -- m~p 1 - ( ( C o l e )  2 - m2~Om 
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If  we ignore the apparent additional mass of  the liquid, the expression for sonic velocity will have the form 

This equation differs from the Navier--Stokes--Boussinesq equation for bubbly systems in the presence of an additional 

term accouming for viscous dissipation due to relative longitudinal displacemem of the liquid and particles in the wave. If  we 

ignore dissipation due to the relative longitudinal displacemem in (5), we find a solution in the form of a shock wave having 

the velocity 
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If  we ignore all dissipative losses in (5), we obtain the Boussinesq equation. Solitons are among the steady-state solutions of 

this equation. The expressions for the velocity and half-width of a soliton have the form 

z/2 12p o ? c Urn - -  1 "~ Y + 1  (~Pc , a t = 4 + --ap~ y - - +  1 " (7 )  
c 3y Po ) 

In the other limiting case, we can use system (1-2) to obtain the evolutionary equation 

a2P a~p - a4p 4~ a3p _ ~ a2(,~p) 2 
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If we ignore dissipative losses, we obtain a steady-state solution - -  solitons: 

, x p = a p s e c h  2 x , a  = 4 + ~ r ~ l  (9) 

In order to study the propagation of pressure waves in three-phase media (liquid - -  suspended solid particles - -  gas 

bubbles), we built the unit depicted in Fig. la. The working section 1 was a vertical thick-walled steel tube with an inside 

diameter of  52 mm and a length of  1.5 m. The tube was partially filled with glass spheres 3 mm in diameter. Grids 2 with a 

mesh of 2.5 mm were placed at the top and bottom of the tube. The porosity of  the medium was determined from the volume 

of the working section and the volume of the spheres placed inside it. 

To weigh the solid particles, liquid was pumped through the working section at a constant rate. Here, we used a 

constant-level system consisting of  a pump 3, a constant-level tank 4, a drain tank 5, an inductance-type flow meter 6, and 

control valves 7. As the working medium, we used tap water and a solution of  water and glycerin. Gas bubbles were introduced 

into the lower part of the working chamber by means of a needle-type bubble generator 8. Air and helium were used as the 

gases. 

Figure lb presents a histogram showing the size distribution of  the air bubbles for two values of gas content. In the 

figure, 1 corresponds to ~ = 2.3% and 2 corresponds to ~ = 0.85 %. Transparent windows 9 were provided in the upper and 

lower parts of  the working section to permit photographing of the bubbles. Low gas flow rates were measured by using a 

differential manometer to measure the pressure gradient over a long thin capillary built into the gas supply system. The gas 

flow meter 10 and the instrument used to measure liquid flow rate were calibrated before the experiments. 

A stepped pressure wave was created by the rupture of  diaphragm 11 separating the high-pressure chamber 12 from 

the low-pressure chamber 13. This wave was then propagated to the working section by the movement of lightweight piston 

14. Piezoelectric pressure gages D were used to measure the prof'des of the pressure waves. The gages were embedded in the 

wall along the working section so that they were flush with the section's inside surface. Signals from the gages were sent to 
analog-to-digital converter 15 and then analyzed by computer 16. 

Low volumetric gas contents in the three-phase medium were measured with annular conduction gages 17. These gages 

were placed in the lower, middle, and upper parts of the working section. The effects of temperature and the salinity of the 

water were alleviated by using a reference conduction gage (positioned ahead of the working section) and a bridge circuit. The 

latter connected the measuring and reference gages to one another and operated at a frequency of 1 kHz. The conduction gages 

were calibrated in a two-phase (liquid - -  suspended solid particles) medium by making small changes in porosity (1-5 % of the 
working value mo). 

The results of  the calibration were used to construct the dependence of  the relative change in porosity ~tm/m o on the 

average unbalance of  the bridge. We obtained the dependence of  gas flow rate on the average unbalance for the indicated 

working value of  porosity m o in a three-phase medium (gas bubbles - -  liquid - -  solid spheres). We then constructed a 

calibration curve for the dependence of gas content ~ = - / tm/m o on gas flow rate at the value of  m o used in the experiment. 
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The advantage of  this method of  calibration is the possibility of measuring relatively low volumetric gas contents (~p < 1%) 

by linear approximation of  the calibration curve to zero. 
The tests showed that nonlinear and dispersive effects caused by radial vibrations of bubbles in the wave have a 

significant influence on the propagation of the wave in the suspension. Figure 2 shows the evolution of  the wave in water with 

glass spheres and air bubbles for different volumetric gas contents ~ and wave intensities Ap [where x is the distance from the 

point where the wave enters the medium to the measurement point, with the parameters of  the medium being m = 0.58 and 
= 0.5 % (a, b) and 2.3% (c)]. It is evident that the dispersive and nonlinear effects are weak and have almost no influence 

on the shape of  the wave for low values of  ~ and low-amplitude waves. In this case, there is not enough time for an oscillating 

shock wave to form at the distances we investigated (Fig. 2a). 

A quasisteady oscillating shock wave is formed at x = 0.712 m with an increase in wave amplitude to Ap/p 0 = 0.7. 

Dissipative processes cause the wave to attenuate slowly as it propagates (Fig. 2b). With an increase in volumetric gas content, 

dissipation leads to the appearance of  a relaxation zone on the leading edge of  the wave and damping of the oscillations (Fig. 

2c). 

Comparing the pressure-wave profiles with data on the propagation of  pressure waves in gas- l iquid media [5], we 

find that they agree qualitatively. Thus, the introduction of a solid phase into a gas- l iquid medium does not qualitatively alter 

the dynamics of  the wave but does produce quantitative changes in its velocity and structure. The solutions of Eqs. (5) and (8) 

can be used to more accurately describe the evolution of waves in three-phase media. 
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To study the mechanisms by which the attenuation of pressure waves takes place in a three-phase medium, we 

conducted tests using water and a water-glycerin solution with a viscosity v = 3.10 -6  m2/sec as the liquid. We also used gases 

with different diffusivities. It was found that if the remaining parameters of  the medium and wave are the same, there is no 

significant difference between the evolution of  pressure waves in water with solid spheres and air bubbles and the evolution 

of such waves in a similar system with a water-glycerin solution as the liquid. At the same time, a change in the diffusivity 

of the gas in the bubbles appreciably alters the dissipative properties of the medium. 

Figure 3 shows the evolution of pressure waves in a suspension of water with solid spheres and bubbles of  air (a) and 

helium (b). The parameters of  the medium and the wave were otherwise similar (m = 0.58, ~a = 1.4%). It is evident that a 

change in the coefficient of  effective thermal viscosity ~T changes the structure of the wave by a factor of  nearly three. An 

oscillating shock wave is formed in Fig. 3a, but dissipative effects lead only to the appearance of the relaxation zone. At the 

same time, Fig. 3b shows that a monotonic pressure profile is formed from the initial signal due to strong dissipation. The 

formation of  such a profile is connected with an increase in heat transfer between the gas in the bubbles and the surrounding 

liquid. This means that, as in gas-l iquid media, the main mechanism responsible for wave dissipation in three-phase 

suspensions is heat dissipation. 

Studies of the structure of weakly nonlinear shock waves have shown that the first oscillation of the wave is described 

well by a soliton. Lines 1 and 2 in Fig. 4, respectively, compare the form of the first oscillation of  a shock wave and the result 

calculated from (9). For wave amplitudes APe/P0 - i,  the experimental profile is described well by the theoretical curve 2 

(Fig. 4a), which makes no allowance for the relative radial motion of the liquid and solid particles around bubbles in the wave. 

Thus, even for solid particles with a relatively high density (al/P2 = 2.46), the dispersive properties of the three-phase medium 

are practically no different than the dispersive properties of a gas-l iquid medium. The dispersion coefficient of the medium 

is determined by the volumetric gas content ~,m and has the form 3 = P~/3~m. 

An increase in the amplitude of the shock wave is accompanied by a substantial decrease in the duration of the 

oscillations and an increase in their acuity. The experimental profile of the first oscillation in a wave with the amplitude Ape/po 
= 4.7 differs significantly from the form of the theoretical soliton (Fig. 4b). 

Figure 4c compares the half-width of the first experimental wave oscillation ~e and the theoretical value/~t for ~ = 

0.5 + 0.9% (~e = t 'U,  where t* is the time over which pressure in the front increases from 0.42APe to Ape, APe being the 

amplitude of  the first oscillation and U the velocity of the shock wave). For amplitudes Ape/p0 _< 2, the half-width of  the first 

oscillation of the wave corresponds to the theoretical half-width of the soliton. The experimental profile becomes substantially 

closer to the theoretical profile with an increase in intensity (Ape/p0 > 2). The large scatter of the empirical data is due to the 

relatively broad histogram of bubble size, the nonuniformity of the bubble distribution along the unit, and the quasisteady nature 
of  the wave. 
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Figure 5 shows experimental data on the dependence of the velocity of a shock wave in a three-phase medium on the 

amplitude of the wave. The parameters of the medium: the liquid - -  water; the gas - -  air; m = 0.58, r = 0.5-2.5%. The 

values of velocity measured on the initial section of the wave path (points 1) agree (to within the empirical error) with the 
values measured a distance - 1 m from the point of entry to the medium (points 2). This indicates that the shock wave is 

formed almost instantaneously at the site of entry. The theoretical curve constructed from Eq. (6) accurately describes the 
experimental data within the investigated range of amplitudes. Thus, the inertial properties of the solid phase have a significant 

effect on the rate of wave propagation, and it is more correct to use the high-frequency velocity c(w > >  w m) than the Wood 
velocity c w. The velocities calculated with allowance for the coefficient expressing apparent additional mass 

I c~ = 1 -  1 1 1 -  1 ] [ 4 ] ]  and without allowance for this coefficient (~ = 1) differ by 3 % and are indistinguishable from 

e viewpoint f the accuracy of the velocity measurement. 
Now let us examine the effect of c~ on the wave velocity. To improve accuracy, wave velocity was measured in a 

suspension of liquid with solid particles but no gas bubbles. Figure 6a shows characteristic profiles of pressure waves in a 

suspension of water with lead beads. The distance over which wave velocity was measured in the medium Ax = 404 mm. 
Figure 6b shows the theoretical porosity dependence of sonic velocity in a suspension of water with lead (lines 1-3) 

and glass spheres (lines 4-6). Lines 1, 4 correspond to high-frequency sonic velocity at c~ = 1, lines 2 and 5 correspond to the 

1 [ 1 - 1 ] [4], and lines 3 and 6 correspond to the Wood velocity [8]. Also shown high-frequency sonic velocity at ~ = 1 - 

are empirical points 7 and 8 for lead and glass spheres, respectively. It is evident (especially for the lead spheres) that the 

experimental data is described well by the theoretical curves, which account for the effect of the apparent additional mass of 

the liquid on wave velocity. 
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